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Introduction.

In the formulation of quantum electrodynamics as introduced 
by Fermi, the state of a system has to obey a supplementary 

condition and the Maxwell equations are not valid as operator 
equations, but only as derived supplementary conditions. Several 
authors have pointed out the inconsistencies1), 2), 3) which arise 
from the fact that the Hilbert space introduced to characterize 
the state of the system does not contain elements satisfying the 
supplementary condition. On the other hand, a considerable 
number of contributions have been made in recent years to 
elucidate the way in which the longitudinal field variables appear 
in the Fermi theory and its connection to the Coulomb inter­
action1)-7), and progress has been made in many respects in 
the understanding of the problem. A rather radical change in 
the interpretation of the scheme by means of the indefinite 
metric of Dirac has also been proposed8).

We want to approach the problem of the formulation of 
quantum electrodynamics in this paper from a different point of 
view. By means of a new quantization method, Novobátzky9) 
has given a canonical formulation of quantum electrodynamics 
with a separated treatment of the Coulomb interaction, avoiding 
completely the appearance of the supplementary condition. In 
a second paper10), he proposed, in order to include from the 
beginning the Coulomb interaction but to avoid the supplemen­
tary condition, to introduce only two kinds of transverse and one 
kind of longitudinal photon variables, instead of the four kinds 
of photons of the Fermi theory. The proposed covariant de­
composition of the potentials which applies well in the meson 
case seems to lead, however, to difficulties in the electromagnetic 
case, owing to the singularities in the operators introduced. There- 
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fore, in taking over the idea of Novobátzky of introducing only 
three kinds of photons in order to describe the electromagnetic 
interactions, we follow a quite different line and the form of the 
resulting theory will in this way also be different.

Whereas the decomposition of a potential vector into trans­
verse and longitudinal parts is always connected with a special 
choice of the time axis, the difference in the physical meaning 
and the role played by the transverse and longitudinal photons 
leads to the conclusion that the distinction between the slates of 
free transverse and longitudinal photons has to be a relativistic 
one. Starling from the interaction representation, one can char­
acterize the states of transverse photons in a relativistic way by 
means of the 6-vector solutions of the vacuum Maxwell equations 
which correspond in any reference system to transverse waves 
only. In order to characterize longitudinal photon stales we in­
troduce then another, scalar field. The interaction with the 
electrons can then be described by defining potentials given by 
these fields and related to a given time-like direction (or to a 
given space-like surface). These potentials satisfy commutation 
relations depending on the given time-like vector.

By means of a canonical transformation, very similar to that 
used in the Fermi theory, one can eliminate the variables of the 
scalar field and obtain the wave equation of the usual reduced 
theory with a Hamiltonian which is the sum of the transverse 
interaction energy and of the Coulomb energy. Transforming the 
equations from the interaction representation to the Heisenberg 
representation, we obtain potentials whose equations depend ex­
plicitly on the special choice of the gauge and which do not 
satisfy the Lorentz condition. The field strengths formed by 
means of these potentials do not depend, however, on the scalar 
photon variables and on the special gauge, and satisfy the in­
homogeneous Maxwell equations. Finally, we show that in cal­
culating the S-matrix, the commutation relations of the potentials 
can be replaced by the simpler ones of the Fermi theory, since 
the additional terms in the commutation relations do not give 
any contribution.

As shown by Prof. C. Møllen, one can build up the theory 
also by starting directly from the Heisenberg picture, and in­
troducing suitable energy-momentum expressions and the cor­
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responding commutation rules. Some aspects of the theory be­
come clearer in the Heisenberg picture and, in writing down the 
formal solution of the equations, one can also get a clearer in­
sight into the transmission of the Coulomb interaction by means 
of the longitudinal waves. The detailed discussion of questions 
related to the Heisenberg representation will form the subject 
of a forthcoming paper.

Interaction representation.

(a) Transverse photon states.

A transverse photon state can be described by means of a 
6-vector Tftv satisfying the vacuum Maxwell equations

â,./ÿ = o. (1)

+ dvFxp + = 0. (2)

The equations (2) express that can be derived from a 4-vector 
as

= d/.AÜ'-dpÁ^. (2a)

Since two of Ihe equations (1 ), (2) arc F,,' 4- d2F',\' + d3F^ = 0, 
^1^23 +^2^31 + ^3^12 = + Fuv represents a transverse field in 
any reference system. To every light vector k/t, kp — 0, cor­
respond two independent solutions of the equation system (1), 
(2), characterizing the two kinds of polarization of a plane wave, 
in writing equations (1), (2) in the form of a particle wave 
equation, one can also give a simple interpretion to the quantities 
related to the particle aspect of radiation theory11).

fhe quantization of the vacuum equations (1), (2) can be 
performed in known ways12). For the hermitian operators 
giving the field strength in the interaction representation we ob­
tain the commutation relations

[F$(æ),FÂ(æ')] =

1 /i dH T dx — ôV}i dfi ()}_ — dv 1) (x — x ). 
(3)
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We use units with c = 1 , ft = 1 ; the sign of the invariant function 
I) (x—x') is that used by Schwinger5)- These commutation re­
lations can also be obtained, following a method of Novobátzky9), 
by deriving Iyv from two quantities Qa, Qb characterizing line­
arly polarized waves and related to canonical commutation re­
lations. One can also introduce two scalar (invariant) functions 
Oi > O2 related to circularly polarized waves. Some more details 
about the free fields will also be given in the forthcoming paper 
mentioned above.

In describing the slates of free electrons by means of the 
Dirac equation, we want to introduce the interaction of the 
electrons with the electromagnetic field first in the interaction re­
presentation. As pointed out especially by Coester and Jauch3), 
the covariant aspect of the calculations in electrodynamics is 
fully preserved in relating the state of the system to a hvperplane 
er, defined by a time-like direction nfl nfi = —1, instead of 
introducing more general space-like surfaces. We shall accept 
this point of view throughout, cr meaning in the following always 
a plane perpendicular to nfi. In denoting by r a lime parameter 
measured in the direction n^, the state 0 of the system of elec­
trons and photons satisfies in the interaction representation a 
wave equation of the form

J
i~-(ft = H< (ft. (4)
OT

'fhe part of corresponding to the interaction energy of the 
electrons with the transverse field F^p can be written in the form

‘ = - ( d a.ifi (x'yÁ/í (x) . (5)

jp,(x') is the current operator of the Dirac electrons in the in­
teraction representation, and the potential will be defined
now by means of the field FJ¿.

Using the notation of Coester and Jauch3), we write d — nvdv, 
and write d~l for the inverse operator which, in the case when 
a Fourier expansion is possible, means a multiplication of each 
Fourier component by (i nvkvy~l. With this notation, we define 
a transverse potential related to the lime-like direction by



Nr. 13 7
a—1 „(1)— d F[xV ii/i. (6)

Avl} nv = 0. (6 a)

dpAp1’ = 0. (6 b)

(6 a) is the consequence of the antisymmetry of F^y, (6 b) follows 
from equation (1). The relation (2 a) is fulfilled by (6), owing 
to equation (2). This shows also that a different choice of the 
time-like direction nfl means only a different choice of the gauge 
of the potential Alp. From (1), (2a), (6b) we have also

□ Arl' = 0. (6 c)

Ay satisfies, according to (6) and (3), the commutation re­
lations

[A/J’C.r), Ap1J(.r')] = id^i D (x — x') (7)
with

<^lv = — dfidyd-2 — nudvd~l — nvd/jld~l. (7 a)

These arc the same commutation relations as those of the trans­
verse potential related to the time-like direction n» of the Fermi 
theory, as given for instance by Schwinger5).

Writing the potential (6) in (5), and taking for the Hamil­
tonian of the wave equation (4) H1 = H1/’ + Hc, where Hc is the 
expression for the Coulomb interaction energy in covariant form, 
the content of the theory is exactly the same as that of the usual 
treatments where the Coulomb energy is added separately to the 
interaction energy of charged particles and light waves. The 
formulation presented here has, however, the advantage that the 
states of the light quanta are described in a relativistic way by 
means of the 6-vector functions F^y.

(b) Scalar photon states.

Recent calculations in quantum electrodynamics have shown 
that one can treat many problems more easily by dealing with 
the Coulomb energy on the same footing as the interaction with 
the light waves. Also for physical reasons one has to avoid the 
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instantaneous aspect of the Coulomb interaction, in ascribing it 
to interactions transmitted by a field. In the scheme, as sketched 
lu jre until now, there is, however, no place left for interactions 
by means of a longitudinal field. The field obeying equations 
(1) and (2) is completely transverse.

We introduce, therefore, a new field in order to describe 
longitudinal interactions and choose it in such a way that it can 
give account of the Coulomb interaction. Tn the quantized theory, 
this interaction will correspond to the virtual emission and ab­
sorption of quanta. This field and these quanta will, however, 
not represent measurable quantities, but will be related only to 
the gauge of the potentials. This will correspond to the fact that 
also in the classical theory the retarded transmission of Coulomb 
interactions is related only to potential waves. Since the homo­
geneous Maxwell equations for the field strengths have only 
transverse solutions, the Coulomb force in the corresponding 
inhomogeneous equations has also an instantaneous appearance.

We introduce a 4-vector field Bfl, satisfying in the vacuum 
equations analogous to (1) and (2)

= 0. (8)

dvB% — dxBv = 0. (9)

From (9) one can write
ß,< = a/ty

and in this way derive B^ from a single scalar function Q (x). 
B^ being a 4-gradient, its space component is in every reference 
system a longitudinal vector. The canonical formalism of the 
equations (8), (9) can easily be worked out. It corresponds to 
the theory of a scalar meson with zero rest mass12).

We want to characterize the states of scalar photons by means 
of the functions Bfl or (). In quantizing the theory we choose 
commutation relations

[Q O), 0 O')] = — i¡) (æ —æ')- (10)

We shall come back to the question of the minus sign in (10). 
It corresponds to negative energy quanta as in the case of the 
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scalar photons of the Fermi theory. As remarked, we do not 
attribute any observable physical meaning to these quanta.

We want to introduce the interaction of the electrons with 
these scalar photons by adding in the wave equation (4) of the 
interaction representation to the transverse interaction energy (5) 
another term of the form

H;2’ = -Cd<7'4(.c).4^(V). (ip
•"O'

We define the potential A¿f with respect to the lime-like direction
as

(12)

From (10), we have for the commutation relations

K?’ (,r), Ay ' (,r')] = idft,D (x — x') ( 13)

dS = — d/ildvd~2. (13 a)

In introducing the potential

= a;!' + Azr, (14)

From (12) we have evidently

1 ¡IV = = o. (12 a)

From (8) and (12)
- "X = Q (12 b)

dflA^ = 0. (12c)

From (8), (9 a), and (12)

□ 4? - 0. (12d)

we have from (6b), (6 c), (12 c), (12d)

□ .4;, = 0, ^.4^ = 0, (14a)

and from (7) and (13)
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(x), Av (.r')j = i d/lv I) (.v — x') (15)

d/iv ~ d^iv ~\- d/iv — ^fiv — - d^dvd "—n^dvd 1—nvd^d L. (15a) 

With (5), (11), and (14), wc can write for the Hamiltonian of 
the wave equation (4)

h, = h/’+w;2’ = A,,(-r'). (ie)
* CT

As we shall see, the wave equation (4), (16) together with the 
commutation relations (15) describes correctly the interaction 
between electrons and the electromagnetic field.

Considerable effort has been made in recent publications to 
define the vacuum state in the Fermi electrodynamics. In the 
present theory, the vacuum state can be simply taken as the 
state in which there are no electrons, no positrons, no transverse 
and no scalar photons present. As a consequence of this de­
finition, the annihilation operators of single particle states give 
zero if applied to the vacuum state 0O. With respect to the photon 
variables this can be written in the form

F^+(.r)øo = O, Q-(.r)øo = 0, (17)

where the ± sign denotes the positive and negative frequency 
parts of the corresponding operators. These equations are natur­
ally independent of the time-like direction z?/z. Owing to the 
fictional character of the scalar quanta which are related only 
to the gauge of the potentials, much significance should not be 
attributed, however, to the second of the conditions (17).

Though we have written the equations and commutation re­
lations in covariant notations, this docs not imply in itself the 
relativistic invariance of the scheme. The commutation relations 
(7), (13), (15) depend explicitly on a time-like vector n^, and 
the Hamiltonian (16) is defined with respect to a reference 
system in which is the time axis. Nevertheless, the scheme 
is not only covariant in its notations, but relativistic also in its 
content. As to the form-invariance of the commutation relations, 
this can be seen from the following remarks*.  The commutation

* The elucidation of this point is the result of discussions with Prof. C. Møl­
ler. Other aspects of the question will be dealt with in the referred forthcoming 
paper.
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relations (7) follow from (3) and (6). Conversely, (3) follows 
from (7) and (2 a). In the same way, the commutation relations 
(13) follow from (10), (12), and (10) follows from (13), (12b). 
(3) and (10) do not depend on and are independent of the 
reference system. The relation between the potentials A^1’, A 
defined by (6) for two different time-like vectors n^, ñft can be 
obtained in writing in (2 a) the potential and substituting this 
expression in (6). The equations (12b) and (12) define in the 
same way a relation between and A^’. Starting from these 
relations one can easily see that if (7) and (13) are valid for 
the potentials A^i , A^} defined with respect to nft, the same re­
lations are valid with instead of for the potentials A“', A^; 
for (7) and (13) involve the relations (3) and (10) which 
are independent of n/jC, and these involve again (7) and (13) 
with ñu instead of . The commutation relations which have 
the same form in every reference system follow in this wav 
from each other, and the wave equation (4), (16) has also the 
same form in everv svstem.

The elimination of the scalar photon variables. 
Coulomb interaction.

The simplest way of showing that the effect of the introduced 
scalar field and of the interaction term (11) is simply the trans­
mission of the Coulomb interaction, and that in this way the 
physical results of the present formulation are the same as those 
of other formulations of quantum electrodynamics, is to obtain 
by a canonical transformation the elimination of the scalar 
photon variables and the direct appearance of the Coulomb 
energy.

Let us transform the wave equation (4), (16) by means of 
the canonical transformation

into the form
(18)

(19)

where
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G = e-iSHl + ¿+i[Hí,S} + ^ [¿,2'j. (20)

The second equality in (20) is valid if [Hlt Z\ and [27, 27] com­
mute with 27. This is the case for

F = C don^ (x) d 1 Q (x) = ( donflju (x) d 1 nv A'~(x) (21)
• o' * tf

for which the Gauss theorem gives with (12) and (11)

(22)

using the commutation relation (10),We have further,

(23)

— i

¿ = 2 ¿
dr

i do do' (x)jv (x') dv d 21) (x — x’). 
' O' ‘ O’

The four terms of (20) give with (22), (23)

G = II{ — H]2’ + do Í do' n/tjfl (x)jv (x')
*’o *(J

{ ~ 1 + W 3“1 j d~1 I) ( r - ,r') = h;" + wc.
(24)

where

Hc. = — * ([ do \ do' n^jtl {x)jv (x') dvd ¿ I) (x — x') - 
~ ' O ’ O'

- i do' (x) nvjv (x') d”1 I) (x — x')

~ * <7 ’o'

(25)

is the covariant expression of the Coulomb energy. The second 
form of (25) is obtained by using the fad that on the hyperplane
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ff one has (dv-\-nvd)d 2D(x— x') = 0. In the special system, 

with nu as lime axis, d~rD(x—x') . /// is the interaction
r 4 n r 1

energy (5) with the transverse radiation field, and the Hamil­
tonian of the wave equation (19) does not contain any longer 
the scalar field variables. We can see from (23) that, in order 
to get the right sign in the Coulomb energy, we had to choose 
in the commutation relation (10) for Q (.r) the sign corresponding 
to the lime-component photons of the Fermi electrodynamics.

On the elimination of the longitudinal variables in 
the Fermi theory.

At this stage, it seems instructive to compare the canonical 
transformations proposed by different authors in order to elimi­
nate the longitudinal field variables in the Fermi electrodynamics. 
In this case, the interaction Hamiltonian of the wave equation

= (26)

Hl = —i da'jp (,!•') Af, (,v") (26a)
*'(T

contains the potential components with the commutation relations

[A¡¿ (x), Av (x)] = iÔflv D (x — x'). (27)

The state 0 has to satisfy the supplementary condition

(,r, t) 0 (t) = 0 
with

Q (.r, r) = A/z (x) + ( d ff' nflj/{ (.r') I) (x — x').
(t)

The potential components Afi(x) obey the equations  A^(.r) = 0.
By means of the operator duv of (7 a) we can define a trans­

verse potential

(28)
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fåp (æ) = (l/iv Av (.r) =

\ — d ¡.i dv d “ dp d — Hp d/i d y Av (æ)
(29)

for which
riyz i/dfi — 0, dfi — 0. (30)

(29) can be written in the alternative forms

//)//(.!') = {dftp + H/( iip — {dpd H/d) (dpd l+ /!v)y Ap(x) (29a)

/Z)/z(.r) = {dftp^ d/cd^hip- (dfld~i-\- n/t) dpd~1} Ap(x) (29b)

= {d/lv — i dfld~\dvd~l+ 2 iip) (dfjld~l-\-2n^)dvd~i}Ap(x). (29

(29a) corresponds to the decomposition of Schwinger5). The 
second term is a vector in the n/t direction, the third term is in 
the special system the longitudinal potential given by a space­
gradient. In this form of dpV one can sec clearly that, for  A/t = 0, 
(í/ip is the projection operator of the transverse 4-vectors be­
longing to the time-like direction n/z. Il is defined as the dif­
ference of the unit operator and of the projection operators of 
the nti direction and of the perpendicular longitudinal direction. 
(29) satisfies the commutation relations (7).

(29b) is the transverse potential in the form defined and 
used by Coester and Jauch3). The second term is a 4-gradient, 
the third term depends only on dvAv. (29c) corresponds to the 
decomposition used by Koba, Tati and Tomonaga4) and by IIu6).

One can arrive in the Fermi theory by means of different 
canonical transformations (18) to the direct appearance of the 
Coulomb interaction energy in the transformed equation (19). 
Such transformations are defined by

27 = — ( rZa n/zj/z (.r) d ' (S^d l+nv)Av(x) (31a)
* O’

27 = — ( do (.r) d 1 nvAv(x) (31b)
* O

27= -^d(j n^j^Çx-yd^1 i^dvd~l+n}\Av(x). (31c)
* ZY ' ' 
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(31 a) corresponds to the transformation used by Schwinger, 
(31b) is the transformation of Coester and Jauch, (31c) cor­
responds to the transformation used by Koba, Tati and Tomo- 
naga and by Hu.

Z results in all three cases by the application of Gauss’ 
theorem, and the commutators*  in (20) by the commutation re­
lations (27).

We obtain in this way in the three cases for the four terms 
of (20)

6 = (dajfl(x)d/td' l(dvd l+ nv) Av(x) +
’ cr

+ ( du ( da' (x)jv(,r') j(dv d~1 + nv) — * dv d~1j d~1D (.r — x') 
* a *g

G = dajLl (x) d^d 1 nvAv{x) +
’ G

da ( da' n¡tjfi (x)jv(x') dvd~ ll d '/) (,r — .r')

• cr ’ er I " J

G = #i + jj da.i/< M dfid dvd~~1 + Av(x) + 

+ Í da ( da' (x)jv(x') dvd~ 1 + nJ + ()[ d~11) (.r — .?') .
• er (f / I

We have in all three cases

i [d/t Afl (x), Z] = — da' nfij/t (.r') I) (x — x') 

e~lZ Í2(x, r) e'x = d^A^x)

and the supplementary condition (28) is transformed by (18) 
into

= 0. (34)

* The calculation of these involves only the coinmutability of the current 
components jv(x') with the time-like component j^(x) on the surface cr. Con­
trary to the statement in ref. (3) and (83), the current operators jv(x') and ]u(x) 
of Dirac electrons themselves in general do not commute on a space-like surface 
(in the point of coincidence).
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From the point of view of states / (t) satisfying (34), the 
transformations (31a, h, c) are identical and lead to the same 
states 0 (r) = e'^/fr). The first two terms of (32 a, b, c) re­
duce for these states to the expression of the interaction energy 
with the transverse potential. From the point of view of the 
Fermi field, however, with the commutation relations (27), 
which reduces only for states satisfying the supplementary con­
dition to the Maxwell field of electrodynamics, the canonical 
transformations defined by (18) and (31a, b, e) are different. 
All of them lead to the appearance of the last terms in (32 a, b, e) 
which arc equal to the covariant expression (25) of the Coulomb 
energy. As pointed out especially by Coester and Jauch in the 
case of the transformation (31 b), the appearance of this Coulomb 
term is quite independent of the supplementary condition. The 
supplementary condition is only used to reduce the first two 
terms of (32 a, b, c) to the expression of the transverse in­
teraction energy.

The origin of the Coulomb term is, however, very different 
in the three cases. In the case (32a) of Schwinger, since we 
have (¿C1 + nr) () 1 1) (.r— .r') = 0 on a, the transformation 
of the interaction energy Hx does not contribute to the Coulomb 

term, and the whole expression comes from the term —ie~1^ — c' ^ 
OT

in (20) which corresponds in the Schrödinger representation, 
where E is time-independent, to the transformation of the Ha­
miltonian of the fields without interaction. In case (32 b) of 
Coester and Jauch, the transformation of H1 gives twice the 
Coulomb energy which is compensated by a negative Coulomb

term coming f
■yd .y

rom —le In the case (32c) of Koba,

Tati and Tomonaga and of Hu, the appearance of the Coulomb 
term is due completely to the transformation of the interaction 
energy Hr.

The transformation (18), (21) is closest to the transformation 
(31 b) of Coester and Jauch. In our formulation we have 
identically d^A/t (,r) = 0 and correspondingly changed com­
mutation relations. The second term in the decomposition (29 b) 
corresponds to the longitudinal potential A^’. But, while (29b) 
gives the decomposition of the same operator A/z (.r) for dif-
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feront nz/— s, the definition (6) and (12) of A^'(.r), A^’(.r) in­
troduces for each n/t a different 4-vector potential Al( (a?) which 
is determined by the 6-vector FfiV (x) and the invariant Q (.t). 
The canonical transformation (18), (21) adds to A^' (.r) the 
Coulomb potential and, as seen from (24), the transformation 
of /Yx leads, therefore, to twice the Coulomb energy. This has 
to be compensated by a negative Coulomb term coming from 
the energy operator of the free scalar photons. One has, therefore, 
to choose the minus sign in lhe commutation relation (10), 
associating in this way lhe transmission of the Coulomb in­
teraction with lhe virtual appearance of scalar negative energy 
quanta.

Transition from the interaction representation to 
the Heisenberg representation.

in
In the present for the introduction of the quantities
the interaction representation has some advantage owing to

the relativistic distinction between light waves and scalar photons. 
In the Heisenberg representation, lhe field equations relating the 
interacting electromagnetic field with the currents of the electrons
have to reduce to the well-known Maxwell equations. Since we
have no supplementary 
equations have to be valid 
This is to be shown now.

in the theory, the Maxwell 
between the operators themselves.

The operators of the interaction representation can be trans­
formed into those of the Heisenberg representation by means of 
a unitary transformation U, depending on the plane a or on r. 
To the operators Av,jv of lhe interaction representation cor­
respond operators Av,,jv of the Heisenberg representation ac­
cording to the relation

Av = U lAv U, •i V J V ‘ (35)

We write bold-face type letters for the quantities in the Heisen­
berg representation.

All the quantities from now on are taken on the plane c, and 
for lhe time derivation in the perpendicular direction n» we can

Dan. Mat.Fys.Medd. 26, no. 13. 2 
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write d = n^d^. The time dependence of the operators of 
the interaction representation (in the direction) is given 
by the Hamiltonian //0 of the system without interaction, 
dAv — í[Hq,Av], and with the Hamiltonian // = //04 /fi 
we have in the Heisenberg representation

M,(x) = i[ll. .lr(x)] = Í' ' ;ô.4r(.r)+ .4„(.r)]; U -

= V ' 9.4r(.r) Í — (x')d/lr I) (,r — .>■').
(36)

In the last form the expression (16) of the interaction energy 
and the commutation relations (15) have been used.

Since the derivatives in the plane n transform in the same 
way as the operators (35), we have with (36) also

.iv(æ) = U~1dx Av(x) UA- nx Í da'j^(,r') 1) (,r —./). (37)

For the second lime derivative (in the nz/ direction) we have 
in the Heisenberg representation*

d-Ar = i[H ,i[ll ,A„]] = U-l{diA1,+ i[Hl,dA,,] +
(38 a)

Using the expression (16) for Hr, the commutation relations 
(15), and

'IX J J = U~ 1 U = (38b)

we obtain from (38 a)

-d2Av(x) = U \~d2Av(x)) UAÀdcF'j^tx'ydd^DÇx — x')
(38)

+ da' dflv I) (x — x) d'Jf( (x').

* The reasoning of formula (2, 11) of Schwinger’s first paper5) which takes 
into consideration only the first two terms of the right-hand side of (38 a), though 
correct in the special case of the Fermi electrodynamics, leads in general, as for 
instance in our case, to wrong results.
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'filis gives with  = 0 and with (□ + d2) Av (x)
u~l (□ + a2) .4„ (x) u,

□ J,(x) = {da'.i/l(x'')ddln,D(x — x')+l\da'dfn,D(x—x')d'j/¡(x'). (39)

On the plane o perpendicular to nfi, we can write, using the 
relations D(x-x') = 0, (dfi + nfld) J) (x — x') = 0 , (dfl~r 
-rnf/d)d~¿J)(x—x') = 0, nud)(dv+ nvd)d~2 D(x-x') = 0, 
which follow at once in the special system, and (7 a), (13 a), (15 a),

d/lvI)(x — x') = {nfl(dv+ nvd)d l +nv(dfl-\~ nf(d)d l}D(x—x) =

= dfivD(x — .r')
(40 a)

d^D(x-x) = 0 (40 b)

dd/iVI)(x — x') = {5//rd —2(dz¿4 /i//d)(dr+n^dfd^'J D(x-x') (40c)

if (x^ — x'^n^ = 0.

Using (40a), n2 = - 1 , nv (dv nvd) = 0, we have from 
(37), with dvAv (.t) = 0,

dr J v = — Í do'Ju (x') (dfl + nfl d)d 11) (x — x'). (41)

In the Heisenberg representation does not satisfy the Lorentz 
condition, but dvAv has according to (41) a value which de­
pends on the currents and on the direction nv with respect to 
which the gauge of the potential was chosen. In the special 
system, with nv = (0, 0, 0, z), (41) has the form

The inverse zl 1 of the Laplacian J is defined by the last equality.
With a similar notation, we can write (41) after partial integra­
tion, in the form

2*
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dvAv = ~^d<j'n^d'yj^Çx'yd 1 D(x-x') = 

= (□ + d2) 1 (d/t + nu d)j/t ,

Nr. 13

(411))

or with dp J fi = 0,

drA„ = â(ü + aâ) (41 c)

In calculating the two ternis at the right-hand side of (39), 
we obtain with (40c) and (41), dl)(x—x') = — ô (x—x') on a,

j¡ do ,¡¡l (a-') d d/lv D (x — a-') =

,jr(x) ^(dv-\-nvd)(da'jfl(x')(dfi + nfld)d~iD(x -x) =

= — Jp(æ) + 2 <dv+ nrd) (dy Jx(.r))

(42 a)

with (40a), (41), (41b), (41c)

( do' d/(l, 1) (x — x' ) d'J/( (.r') =

" (^r+ nt,d) ( do'd' nflJ l((x')-d 11) (x — x') + 

+ do’ d'j^ (a*)  (d/{ + d) d~L I) (a- — x ) =
(42b)

-(dr+ nrd)(dyAy(x))--nrd (dxAy(x)).

From (39), (42a, b)

□ Av — dv (dx Jx) (43)

which gives for the field strengths defined by

d,.A II (43 a)

the Maxwell equations

d¡i Fflv ,j v.
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The potentials are related to a gauge depending on nfl) but 
the field strengths satisfy the Maxwell equations (43b) which are 
independent of n/(.

From equation (37), with .4'J', instead of Av, df,v, one 
has, according to (40 b),

¿^4^ = 0, drÆ,2’= d.zi,. (44)

(39) gives, if written with d'^v or .Ip2', d^, equations of the 
form (43) with the covariant expression of the transverse or 
longitudinal current with respect to the vector on the right­
hand side. The equation for .1^’ can be written with (44), (41 c) 
in the form

□ +d2) lnxJx (45)

which shows that JLy2) differs from the Coulomb potential 
related to nv

= n/O + d2)
(45a)

only by a solution of the homogeneous equation  .I,21 = 0. 
The corresponding inhomogeneous equations for the quantities 
O and lin depend also on n^.

As to the field F^v, in writing

we have with (40b) and the equations corresponding to (37)

(46 a)

According to (12 a) = 0, but with (46), (37) we have, 
in stating first that with (40 a), (41), (41c),
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>x(x') D(x — .r') = (dr+ nrâ)ÎiM'/îxJx(x^d 'd(x —.r') +

+ nv^ da'Jx(x/)(dx + nxd)d 'j)(.v — x') = — (drF 2zq,d)(O + d2)~l nKjx,

(46 b)
JF"2) = n ■*-  /LIV 1 l/l

(d/li^v d^n^) (□ + d ) ^?x«7x ^fi^v dvlfl.

(46 b) is the covariant expression for the Coulomb force, and 
we can see explicitly that the field l^/lv does not depend on the 
scalar field variables which are related only to the gauge of the 
potential.

On the calculation of the S-matrix.

In the reduced form in which the wave equation is

A

C = /7'1’+//c (19a)

with the expressions (5) and (25) of the transverse interaction 
energy 1 and the Coulomb energy H(:, the present formulation 
of the theory is identical with that obtained by eliminating the 
longitudinal variables of the Fermi electrodynamics. In cal­
culating the S-matrix in the reduced theory, we obtain the same 
result in both cases.

In the Fermi electrodynamics, however, the calculation of 
the S-matrix is much simpler in the unseparated form, and the 
common treatment of analogous terms is the chief advantage in 
comparison with the reduced theory. We want to show now that 
the simple rules of calculation of the unspareated Fermi theory 
follow also directly from the unseparated treatment of the present 
formulation. In the calculation of the S-matrix the commutation 
rides (15) of the present formulation can be replaced by the 
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simpler rules (27) of the Fermi electrodynamics, the additional 
terms in (15) giving no contribution.

Writing the solution / (r) of equation (19a) corresponding 
to an initial solution / (r0) in the form

/(O = ¿T.ToZOoX (47)

the unitary transformation i/T, r0 can be expanded according to 
perturbation theory in the form

^t,t0 = 1 + ^t?t0+ ’ - + ^t0+ * ’ * (47 a)

Ft^t0 contains in the integrand k factors G(rt). In writing 
G (r,) = Z/j (Tf) I we obtain a number of terms which
can be classified according to the number of factors 
The terms with a single factor Hc(r() give a sum

k pr <*r.  2

i = 1 *̂o  » To

Hc(t )^c/t.+1H,111(tí.+1) • • •
VT0 ^To »To

Similarly, we obtain terms with more than one factor Z/C(ri), 
and also a term with only transverse energy factors.

Following Hu6), but simplifying somewhat the argument 
which does not depend on the special réintroduction of the 
longitudinal field variables, we want first to show how in the case 
of Tq —> —oc, T -> -J- oc of the S-matrix, the sum of (48) and 
of the corresponding part of the term

r ,»T!

dT2//^’(T2) •
tø €'T0

of can be brought into a form in which the identity with 
the analogous terms obtained by the simpler rules of the unse­
parated treatment of the Fermi electrodynamics becomes mani­

<-oft+1\ CT‘
■ ■ Wa + T/'Oi+i) 09)

» Ta

(48)
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fest. Analogous considerations hold for the case of the terms 
containing more than one Coulomb energy factor. The same 
argument will then lead at once to the mentioned simplification 
of the calculation rules in the unseparated treatment of the 
present formulation with the commutation relations (15).

Since n/t) d~l I) (x— ad) = 0 on the plane uT, we
can write the Coulomb energy (25) with5) 1) (x'—.r") 
I)+(x'—.r") + /l (.r'—.r") in the form

HC(O = tx' ) V/(j/l + 1
* °T * °t

* r0

\I) ' (x' — x") + I) (.r' — x")}.

(50)

In introducing this form of Hc(r) into (48), we want to transform 
the expression, by successive application of Gauss’ theorem, in 
pushing the second surface integral in (50) with D+ (x'—x") at 
the right, with D~ (x' x") at the left of the terms.

To obtain the necessary formulas, let us write for an arbitrary 
function G (x, t)

g(x,r) = \drG(.v,r). (51)
•^0

W ith the notation g (x, r) = p (.r/r) for ,r on aT, we have

d
dg(x!r) = ^—7 (.r/r) — \ drdG(æ, r)+G(æ, r) (52 a)

-dvg (.t/t) = — (dr + nrd) g (x/r) + g (x/t) =

nvG(x, r).

(52 b)

Since from (51), g (x, r0) = 0, we have from the Gauss theorem 
and from (52 b)
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We apply now this formula to different expressions G (x, r).
With

G(x",ri+1) = + -x") (r,+1)- • • (54a)

and with the notation

(53), (51)

(54)

dcr"jv(x'') nv
<h'

d'~lD+ (x'

d ' I) (x'—x")+

d’~l D+(x'-x")

where the dots . . . mean some other factors depending on rf + 1, 
f«T (i ,«T

\d4x", we obtain from 
^0

* To

The change of sign of the first term comes from dv D+ (xr—x") = 
— d’v D+ (x'—x"). In the case of an even number of differential 

operator factors acting on the same variable we can omit the 
primes.

With
G (xz T ) = Ç dajfl(x') Í*  dfid 1 + 7?/z W 11) (x'—x") (55a)

(53), (51) gives
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With

T(._t) = /7V’(Ti-i) • • • dnd d’ 1 D (æ—æ") • • • (56 a)

we obtain from (53), (51)

• • ■ if v‘± ^d-^D-çx'-x")-■ ■ =

_ ■ tT"
= -yd4x,,jv(x,)ydTi_íHlílXTi_í)-■ ■dv[\d/ld~i+nf^d-lir(x'—x")- +

* To •- T0

+ ^da"jv(x')nÁdTi_íH{lí](Ti_})- ■ ■ P d^d~l + nj d,~iD~(x'— ./')• • •.

*- <7t t Toi - 2

(56)

The relation (54) can be used repeatedly in order to push 
the surface integral with I) (x'—x") in (48) with (50) to the 
right. livery application of (54) gives a new term and, finally, 
we may use the relation

yd^'j^Çx'^nd^d^d ^nÅd' lD+(x'—x'') = 

= \ d4 x"jv ( x" ) dv íI d/t d~ 1 + nJ d~1 n+ (x'_ x" ) +

• T<)

/>

+ \ da"jv(x") nr^ dpd~l+ d'~lD+ (x' x").

f aT1 0

(57)
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We obtain in this way for the corresponding part of (48)

l+njd lD+(æ'-æ")

•r0

(58)

and from the last term, according to (57),

pT/<—1 p /.
\ dTkH\{} (rk) \ do"jv(x") nd-dfld ~l + nfl\d' ' (x'—x").

(58a)

In a similar way, for the part of Hc in (48), (50), containing 
I)~ (xr—x"), we can apply first the relation (55) and then re­
peatedly (56) in order to push the corresponding surface integral 
to the left. Changing afterwards the notation according to x' x", 
fi^v, i^j, and using —I)~ (x"—x') = I)+(x'—x"), we 
obtain for this second part of (48)

and from the terms containing a surface integral at the left

(59)
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(59a)

í^í-L

’To

d' '/) (.r'—.r")

Since we have for any finite x’,

lim \ du'j/.r'') n^d^d l+n J d’ l/f (x'—,r") = 0, (GO) 
\-

the terms (58a), (59a) do not contribute to the S-matrix, even 
if we do not suppose an adiabatic switching on and switching 
out of the interactions. The contribution of (48) to the S-ma­
trix is, in this way, the limit of the sum of (58) and (59) for 
Tq—> — x . T -> + 2C ,

(61 )

We marked only by dots the transverse energy factors. 
(49) yields an analogous term with

(.u'—.u") == (d//r —d^d 2—-d^nvd l—drnf(d l)D+(x'—x") 

in the integrand. This cancels with (61) to the simpler term 
containing the factor fi/lv I)+ (x'—x") which corresponds to the 
commutation relations (27) of the Fermi electrodynamics and 
can be obtained directly from the unseparated treatment of this 
electrodynamics. This gives the result of Hu.

We return now to the question of the unseparated treat­
ment of the theory with the commutation relations (15). Since 
(d^d-1 + 7?^) d’~’ D (x'—x") = 0 on the plane oy, we have
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í*  í*
\ da'j^x) \ do"jv(x") nr(dfld~l + n/t) d'~l
* * <7t/

{D+(x'-x'') + D (,r-x")} = 0.

(62)

Writing, instead of (50), this expression at the place of Hc(t') 
in (48), the resulting expression also vanishes. Using the relations 

(54), (55), (56), (57) with (dz<d_1 + instead of + nJ

we obtain analogous expressions to (58), (58a), (59), (59a) and 
also to (60). With a result analogous to (61) we obtain in this wav

i = 1 j> i

W/-i
.u ./;(./)• .U'á,(.!•")••■

’ r0 • t0

(2d/(dvd 2 + df)nvd l + dvnf(d I)+(x'~ x") = Q 

for r0—> — X , t -•> + x .

(63)

(63) shows that terms of the type (61), (63) of the S-matrix, 
calculated in the unseparated treatment with the commutation 
relations (15), and containing the factor 

d/í(VD+(x'—x") = (óf(V—2d¡Lldvd z—d^nvd i—dvii/ld l)I) (x'—x") 

can be replaced by the simpler terms containing the factor 
5//V D+ (x'—x"). The contribution of the other terms vanishes. 
(It is understood, that the ordered products of the unseparated 
treatment correspond, as in the Fermi electrodynamics, to the 
arrangement where the negative frequency parts of the potentials 
stand to the left of the positive frequency parts, both for dj and 
Az¿’). bhe result is the same as if we had used the commutation 
rules (27) of the Fermi electrodynamics.

The combination of the results (61) and (63) shows further 
that the contribution (61) of (48) to the S-matrix can also be 
replaced by the simpler expression
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; X i’U— 1
-(— \ ¿4æ'/a(*')  • • •

i = L } > i * To

• • • dfldvd~2D+(x'-x")
’To

To-> — X , T —> + X .

(64)

(64) contains the factor Z)+ (.r/—x") — — d/tdpd^1 I) (æz—x") 
which corresponds to an interaction of the electrons through the 
field (x). (64) can be obtained also directly in writing the 
first form (25) of the Coulomb energy in (48), making the de­
composition 1) (x'—x") = D (x'—x") + 1) (x'—x") and using 

the argument corresponding to (54)—(61) with —t dfid 1 in­

stead of J” dfld~l + nJ .

Using the same arguments, but starting from the second form 
of H(: in (25), the resulting contribution to the S-matrix obtains 
the form

2 nvd 1 + dv nfi d J)r (æ~ -r")

To~> — X , T — X .

(65)

T his can be obtained also by subtracting half of the vanishing 
expression (63) from (61). (61), (64), (65) give alternative forms 
of the contribution to the S-matrix, corresponding to the Coulomb 
interaction.

Phis work has been performed in the Institute for Theoretical 
Physics of the University of Copenhagen. I wish to express my 
gratitude to Professor Niels Bohr for the facilities offered in 
the inspiring atmosphere of his institute. 1 gratefully acknowledge 
the benefit of many helpful discussions with Professor C. Moller 
and wish to thank him for the interest he has taken in this work. 
Also to Professor Marcel Riesz 1 am indebted for illuminating 



Nr. 13 31

discussions on the free field problem. My stay and work in Co­
penhagen were made possible by a grant from the Rask-Ørsted 
Foundation.

Summary.

A formulation of quantum electrodynamics, without a supple­
mentary condition, is given. Starting from the interaction re­
presentation, light waves are characterized by the 6-vector field 
satisfying the homogeneous Maxwell equations. In order to 
describe longitudinal interactions, an additional scalar field is 
introduced. Interactions with the electrons arc defined by means 
of potentials given by these fields and related to a special lime­
like vector n» (or to a corresponding space-like surface). The 
scalar field variables can be eliminated by means of a canonical 
transformation which leads to a wave equation containing the 
transverse interaction energy and the Coulomb energy. In the 
Heisenberg representation, the potentials whose gauge is related 
to the special time-like vector nft do not satisfy the Lorentz con­
dition. rhe field strength operators obey, however, the Maxwell 
equations. In calculating the S-matrix, the commutation rules of 
the potentials which depend on can be replaced by the simp­
ler rules of the Fermi electrodynamics.
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